vamos a aprender a utilizar en esta Unidad para resolver sistemas lineales de dos ecuaciones con dos incógnitas es el método de reducción. En resumen, consiste en multiplicar una o ambas ecuaciones por algún(os) número(s) de forma que obtengamos un sistema equivalente al inicial en el que los coeficientes de la x o los de la y sean iguales pero con signo contrario. A continuación se suman las ecuaciones del sistema para obtener una sola ecuación de primer grado con una incógnita. Una vez resuelta esta, hay dos opciones para hallar la otra incógnita: una consiste en volver a aplicar el mismo método (sería la opción más pura de reducción); la otra es sustituir la incógnita hallada en una de las ecuaciones del sistema y despejar la otra. Veamos el proceso por fases.
- Se multiplican las ecuaciones por los números apropiados para que, en una de las incógnitas, los coeficientes queden iguales pero de signo contrario,
- Se suman ambas ecuaciones del nuevo sistema, equivalente al anterior.
- Se resuelve la ecuación lineal de una incógnita que resulta.
- Para este paso hay dos opciones:
- Se repite el proceso con la otra incógnita.
- Se sustituye la incógnita ya hallada en una de las ecuaciones del sistema y se despeja la otra.
De nuevo es claro que todas las aclaraciones hechas en la sección del método de sustitución sobre la discusión del sistema en orden a saber si tiene solución o no y cuántas (en caso de tenerlas), son igualmente válidas en este método.
Veamos un ejemplo de los métodos resuelto por el método de reducción:
entre tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno?.
Llamemos x al número de euros de Ana e y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la ecuación x + y = 600. Si Sergio tiene el doble de euros que Ana, tendremos que y = 2x. Ambas ecuaciones juntas forman el siguiente sistema:
x + y = 600
2x - y = 0
Vamos a resolver el sistema por el método de reducción. Para ello, teniendo en cuenta que, en ambas ecuaciones, la y tiene coeficientes opuestos, podemos pasar a sumar directamente ambas y nos quedará:
3x = 600 ⇒ x = 600/3 ⇒ x = 200
A partir de este momento es cuando se pueden aplicar caulquiera de las dos posibilidades descritas más arriba. Como en secciones anteriores ya hemos resuelto esta parte del problema sustituyendo la x para despejar la y, vamos ahora a utilizar la otra posibilidad, es decir, vamos a terminar el ejercicio con la forma más pura posible de aplicación del método de reducción. Para ello, vamos a volver a aplicar el método para hallar la y sin tener que recurrir a ninguna sustitución.
Multiplicamos la primera ecuación por -2 y obtendremos el siguiente sistema, equivalente al inicial:
-2x - 2y = -1200
2x - y = 0
Si sumamos ambas ecuaciones de este sistema tendremos:
-3y = -1200 ⇒ y = 1200/3 ⇒ y = 400
Por tanto, la solución al problema planteado es que Ana tiene 200 euros y Sergio tiene 400 euros, es decir, el mismo resultado, evidentemente, que habíamos obtenido con los métodos de sustitución e igualación.
DISPOSITIVAS
Y AQUI LOS VIDEOS
BUENO DE ESTE TEMA APRENDI LO QUE SON LAS REDUCCIONES Y COMO SE HACEN QUE PASA CON NUESTROS SIMBOLOS